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The asymptotic solution for the incompressible viscous flow past a semi-infinite
flat plate constructed by Goldstein (1956, 1960) can be valid only if the solutions
of certain ordinary differential equations obey certain constraints (given in
Goldstein 1956, 1960). Inthispaper, we construct the solutions of these equations,
show that the necessary constraints are met, and hence establish the validity of
the asymptotic solution up to the order considered. The manner in which un-
determined constants appear in the solution are discussed.

Introduction

Goldstein (1956, 1960) obtains an asymptotic description of the stream function
yr;, for the low, with velocity U, of an incompressible viscous fluid, with viscosity
1, past a semi-infinite flat plate which in Cartesian co-ordinates lies in z; > 0,
y, = 0. With

= 7)&1//“7 ‘= ge—»,}m', € = §+z77 = (U/ )% (%‘1—{—’&?/1)91‘ (1)

where v is the kinematic viscosity and &, 5 are the conventional parabolic co-
ordinates stretched by (U/v)%. The plate lies in 4 = 0 and the flow field occupies
the region —co0 < £ < o0, 7 > 0. The least general potential solution into which
the boundary-layer solution merges is given by (see Goldstein 1960) ¢ = Imw,
where w is given by

{2+ B0+ X

e, € [ m, m logg)

+ bm, m~1(log g’)m-—l +... + bm, 1 IOg €/ + bm,O]’ (2)

where # = 1-7208, and the b, ; are real. The expansion of w for large £ ({£| > 7)
suggests that the appropriate form for the asymptotic solution for ¢ in the
boundary layer is

U= Efo(n) + 71 fa(n) + g2(n) log £]

+E72fa(n) +ga(n) log £ + hg(7) (l0g £)°]

+ &3 fa(n) + ga(n) log £+ hy(n) (log §)2 + ky(n) (log E)*]+...,  (3)
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338 J. D. Murray

where the functions f,.¢,.%,, k. ... and their first derivatives vanish at the
origin and, by comparison with (2) for £ large and |£| > #,T must be such that

Jo~2n=p, fo~bio ga~ by,

Js ~ 37(byy —byy M), gz ~ Wby, kg~ 0,

J1 ~ (2723 — bgo) — N(372bap + by — 2bag) +9*(3b11 — b1o)s (4)

95 ~ (§71%bg3— bgy) — 27(byy — bgy) — by 7%,

hy ~ —byy+ 20997, ky ~ — by, ’
the error terms being exponentially small. Goldstein (1960) gives a complete
discussion of the form of the solution: the discussion rests on the conjecture that
certain ordinary differential equations admit solutions with specifically restricted
asymptotic behaviour. Imai (1957), in a completely independent investigation,
used exactly the same form for the 1/{’, (log £')/¢{’, 1/£ and (log £)/£ terms and hig
numerical calculation for the constant by; (see equations (3), (4)) is in agreement
with that found below.

2. Differential equations and their solutions
Substitution of (3) in the full Navier—Stokes equation, in appropriate parabolic
co-ordinate] form, shows that the f, g, &, &, must obey the following differential
equations:§
oy = 0.
Ly(gs) = 0, Ly(fy) = F,,
Ly(hg) = 0, Ly(gs) = By Ly(f3) = Fo,
Ly(ky) =0, Ly(hg) = Fyy, Ly(gs) = Fooo  Ly(fs) = Fia,
where f, is the Blasius function, f, ~ 29— p, £ = 1-7208, f;(0) = o = 1-32824,
fo ~ vexp(—A%), where A = y—1f, and y is a constant, the primes denote
differentiation with respect to %, and
= d(nfo—fo)/dn +f69£ —J' go ~
F:n = 2[hy fo—Ps fo'l, Fi —f(/)gg —fo 93
Fyy = 9295 — 39595 + 3[fo ks —fo ks
Fio = [ 9295 +9295—29:f0 — 1092fo~ 12g;
+29[295 +fog3 —fo 9]
+27%(fo95 +f6'gé]+"[f6hii o 1y
+(9sfs — 395 f2— 3ng2+gg,f2 L
Fys = [3fy92 + 1095 + 17f5 g, + 20f5 g2 — 293f5 (nf s — fo)]
+[—(ga fo +12f 5+ 2fo fo— 92 s+ 10f ¢ o)
+ 29(2f% +f0 3—Jof2)
+203(fo fa+of2) + (Fo9a =10 94)]
+ o fd =32 S5l ’
1 Since we are considering a descending series in £, tan—! £/ must be replaced by
ir—tan~1 9/£ for £>0 and —}n—tan~! 9/ for £<0.
I These are the optimal co- ordinates (see Ka.plun 1954)
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§ The operator L, = +f0d—§+(n+ l)fod 2-}—fod——(n——l Jo -

(5)

(6)
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Itis shown in Goldstein (1960) following Whittaker & Watson (1932) that the two

complementary functions of L,(y) = 0 with double zeros at the origin, denoted

(2) ,,(3)
by ¥, ¥, are y(nm=06772/2!——(71—}—2)&2775/5!"'""] (7)
YO = |3 — 2(n+2) a2y (6 + ...,

for small %, and for large 7,

YD ~ a® L YD E, + oD H 1

n n n n n n’ 8

y® ~ anf2n+aP + 0P B, +cP H,, | ®

where B, ~ A1+ (n—1)n/4A%+...], } 9)
H, =exp(—A) A" 21— (n—2)(n—3)/4A2+ .. ],

and a{?, b2, ¢, i@, bP, ¥ are constants. For each n, the {2 and ¥ (except
for y$?) were calculated numerically by solving L, (y,) = 0 in steps of # = 0-02
with initial boundary conditions

YD =0=yF =y, yP = a,} y=0
YD =0=yP =y, ¥V =a,

After computing the E,, the numerical solutions so found were then equated to
the asymptotic form (9), at a value of 4 where the exponential terms were
negligible, and the constants a{2, a{?, b2, bP evaluated. It was found that none
of these a?, b® (i = 2, 3) were zero for n up to 4, except b, which case is discussed
below. The particular integrals were found in a similar way and none of a@,
bY (1 = 4,...,9) defined below and in the appendix were found to be zero.

The boundary conditions on the f,, ¢,, 4, k, are that they must have double
zeros at the origin and be asymptotic to the values in (4) with exponentially small
errors. Since equations (5) are linear the f,, 9, %,. &, will involve linear combi-
nations of the complementary functions and particularintegrals, and must besuch
that the coefficient of the E, in each of them must be zero (see Goldstein 1960).
In view of the complicated form of the F, in (6) each function must be treated
separately to ensure that this is possible. It is necessary, as shown below and in
the appendix, to consider the functions in the order, k, 4, g, f for each n. The case
n = 2 is a special case and will be discussed in detail. The case n = 3 will also be
discussed as a more typical case. All other cases are treated comparably. The
complication increases with n, and the case n = 4 is given for reference in the

appendix.
Case n = 2. The equation for g,(7) is, from (5),
Ly(9,) = 0.
This equation is an exception to the general form since
¥ = nfo—fo.

and so by = 0. Thus with (4)
g2(n) = bys(mfo—Jo)lB, (10)

where b,, is as yet undetermined.

(8]
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The equation for f,(7) is given by (5) and (6). Complementary functions are
(since b2 = 0)
Y~ P = B~ A+ O Byt P
Let y3® be the particular integral of the f, equation with the first term in ¥, only
and »» that with the second term in F, only and b,; = 8. Thus from (5) and (6),

YD ~ 1% + afP + bP B, + ¢ H,,
Y9 ~ P+ b B, + o H,,

and so fom) = 0 + b,y B+ AyR + By,

where A, B are constants at our disposal. Since, from (4), f, ~ b;,, 4, B must be
chosen to annul the # and E, terms in the above expression for f,. Thus

B =— o, by = (Blabf) (B75) — ablV), (11)
which thus determines b,,. With these values
Ja) ~ brg = [+ (@9 o) () abf?) — () ) + 4B,

Thus b,, is undetermined since A is undetermined.

Note that the construction of fo(7) depends on b$¥, b3¥, b5 being non-zero: this
was found to be the case numerically. Although the fact that 6@ = 0 is excep-
tional, the solution for f,(#) can still be constructed. At this stage one undeter-
mined constant is introduced.

Write

Je) = 1)+ Aofa(m), bip = 1010+ A 2bsp,

where o= Y — ﬂzy(a)/“+b11?/ DB, ofe=yP = 1Wo—Jor (12)
1010 = [@¥ + (af® [ (52650 — abih) — (B3a)a®],  obyg = B

The functions g,(9), g2(1). 1.f2(0), 1.f (1), ofa(1), of3(n) are tabulated in table 1,1 and
the second derivatives at # = 0 in table 5. Also

]_b]_o = —2'2062 a;nd 2610 ESS 18 =S ]_-7208

If the solution were terminated at this stage an undetermined constant
A (or b,y) appears. This will allow this solution to be joined onto that valid near
the leading edge.

Case m = 3. From (5), hg(n) can only be a combination of complementary
functions. No linear combination of %{? and #¥ is possible which annuls both the
7 and K, terms so that the combination asymptotes to zero with an exponentially
small error. Therefore 24(y) = 0.

Since A4(n) = 0, the equation for g,(y), from (5) and (6), becomes

Ly(gs) = 2(h3 fo—hs fy') = 0. (13)

By the same argument as for hy(7), g;(%) = 0 and b,, = 0 (equation (4)).
The fact that 24(7) = 0 and g4(y) = 0depends on a{?, b? being non-zero, which
was found to be the case numerically.

T Tables 1-4 have been lodged with the Editor and may be borrowed on request.
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Since g5(17) = 0 the equation for f,(y) from (5) and (6) becomes

Ly(f3) = fogs—fo 95 = 0.

From (4), fo(n) ~ m(by; —byq 1), S0 it is possible to combine y$? and y§® toannul the
E, term and asymptote to the above, giving

fa(m) = (37hy, [abl?) (B P — b7 35Y), (14)
and bay = (6byy/ab?) (057 ai? — U ). (15)

Clearly with a?, b®’ not equal to zero, as is the case, the construction of f4(7)
depends on ¥ being non-zero. This was found to be so numerically.

fa(m).f3(n) are tabulated in table 2,1 f5(0) in table 5, and 2-2670 < by, < 2-2673.

Note that the n = 3 case introduces no more undetermined constants.

The n = 4 case is carefully discussed in the appendix and it is shown that a
further undetermined constant B is introduced.

3. Conclusions

The differential equations were all solved on a Univac machine as initial-value
problems with steps of 0-02 in # in the final stage. First and second differences
of the functions and first four derivatives were calculated. The asymptotic form
when compared with the numerical results gave the various constants. The
functions behaved numerically as predicted by the analysis. This numerical
verification settles the question of the construction of the solution up to the
fourth term.

The solution obtained involves two undetermined constants 4 and B which
will be determined by joining the above solution onto the leading edge solution.
As far as the author is aware, no correct solution for this region has yet been
found. In the external potential flow there are more than two undetermined b's
although there are effectively only two independent undetermined constants
related to 4 and B. At the n = 2 stage b, is undetermined. At the n = 4 stage
11> Ba1s bags bas, by are determined and by, by are undetermined. by, by, are also
unknown but are related to b,, and b,,. b;; depends only on b,, and by, on b, and

bso
Thus, in conclusion the functions g,(7), A4(7) (identically zero), gs(7) (identi-
cally zero), f5(7), ky(n) (identically zero) are all determined while f,(3), g4(7),

Jfa(n) are undetermmed f2(n) and g,(5) depend on one undetermined constant 4,
introduced at the n = 2 stage, while f,(5) depends on two undetermined constants
A and B, the second, B, being introduced at the n = 4 stage.

1 would like to thank Professor Sydney Goldstein for suggesting the investiga-
tion and for the many helpful discussions. I would also like to thank the late
Mr Kenneth Kelly for his assistance with the computation. The work was sup-
ported in part by the ONR Contract Nonr 1866 (34). The computation was
carried out under a National Science Foundation grant.

1 Lodged with the Editor.
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Appendix

The general form of the solutions to equations (5) is discussed in §2 above and
the particular cases n = 2, n = 3 are considered there. Although in principle the
n = 4 case is not essentially different, it is given here for reference. Note that a
further undetermined constant is introduced here.

Case n = 4. The equation for k,(7) is, from (5),

L4(k4) =0,

where k; ~ —by,. By the same argument as for 2, and g, (see §2above) k, = 0 and
bys = 0. This fact is dependent on 5 not being zero, which again was found to be
the case numerically.

The function h4(77) satisfies

a(Pa) = 9292 ~ 39295+ 3(fo ks —fo k4
= 9297 — 39295 (A1)
since k, = 0. Let y{¥ be the particular integralof (A 1). Since the right-hand side

asymptotes to zero, YD ~ Y + P B, + P H,.
From (4), by ~ —byy+ 2bye ) = — by, since by, = 0 from above. Thus, we can
combine ¥{2 and »{¥ to annul the E, term to give

ha(n) = Y& —VPYDHD, by = (PP —bPaf®) b2, (A 2)

where, since b # 0, it is necessary that b is not equal to zero, which was found
to be the case numerically.

Table 41 gives k, (%), hy(y), table 5 k;(0), and 5:948 < b,y < 5-949.

The function g,(y) satisfies (see (5) and (6))

i 1

Ly(g4) = (— 9292 +9295— 292 fo—10gs f¢ — 1293)
+29(2g5 + fo 95~ o 92)
+29%(fog5+F0 92) + 2(fo s — 1o Py
+ (g5 2 — 3¢5 fa— 392f2+gé”f2 . (A3)

The right-hand side of (A 3) contains a term multiplied by the unknown constant
A and comes from the ,f, (see (12)) contribution in the last bracket. Let y{® be
the particular integral excluding the ,f, function and its derivatives and y3® the
particular integral with the ,f, function and its derivatives only and with 4 = 1.
The right side of the equation for y{® asymptotes to — 20b,, and so

y( )N_bl 7 +d(5)n+a(5)+b(5)E +C H i
The right side of the equation for ¥ asymptotes to zero, so
yY® ~ aP+UPE, + P H,.
Since (4) give
91(n) ~ (3733 — bgy) + 29(bgy — baa) —b119® = — by + 29bgy — by 77,

T Lodged with the Editor.
1 The d,’s are constants, none of which is numerically zero.
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the appropriate linear combination of {2, 42, #¥ and #® to annul the E,; term and
give the correct asymptotic form above is

1) = (1/b2) [S(d§9 ~ 2bn) b — P14/ -
+(8fax) (2bgy — d?) ys? + ¥
+(AJB) (90 - BO D),
9a(n) = 194(n) + A 5g4(n),  bsy = 1531 + A 5bgy,
where ,g,, o¢, are defined by (A 4). In a similar way to the above, the existence
of 194(n), 29,(77) depends on all of b2, b, b (5P has already been shown to be non-
zero) being numerically non-zero, which was found to be the case. Thus
194(0) ~ — by 9P+ 29byy + 1051, 294(9) ~ ba]:
where 104, = (a{®/ab)[8(2by; — diP) + abP] + (8afP o) (AP — 2by;) — aff‘),} (A 5)
sbuy = (PP~ 9 D).
194(0)s 294(7) and their first derivatives are given in table 4,1 ,94(0), ,91(0) in table 5,
and 65-794 < ;b < 65-798 and 9-952 < ,by, < 9-953.

(A 4)

f3(0) 15(0) 212(0) 95(0) 13(0) A
1-3282 0-0000 1-3282 2:2058 14-6424 —4-0819
191(0) 294(0) JSi(0) 2f1(0) 2f110) of1(0)
—69-3414 — 81177 —515-6479 —97-7783 2-7547 21-0582
TABLE 5

Finally, f,(y) satisfies, from (5) and (6),
Ly(fs) = [3fog2+ 1095 + 17f 4.9 + 20f5 g2 — 207°f5 (0f 5 — o))
+1= (922 + 1215+ 2f0 f2— 95 f2+10f5 /)
+292f3 +fo fa— o)
+20%(fo f3+fo f3) + (fo91— o' 94)]
+f fe =313 135 (A 6)
The unknown constant A appears on the right-hand side of (A 6), as does 42

Let 457, y®, ¥ be the particularintegrals with the right side of (A 6) the coefficients
of 4°, A, A2, respectively. The asymptotic form of the right of (A 6) is

(30by; — 20,by5) — 20,0 A.
Thus YD ~ (3byy —1byo) M2+ APy +a” + P B, + 0517)H4,‘l
U~ — by Dy U B+ D (A7)
WO ~ P+ OB+ P H, J
The d{” and d® were found to be non-zero. From (4),
Ja(m) ~ (§7%55 — bgg) +7(2bgg — by — 377%D54) +9(3b11 — by)
= (37235 — o) +7(2D3 — ) + 9*(3b13 — byy)-
t Lodged with the Editor.
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fa(n) is given by a linear combination of the y,’s, namely

fan) = By + Cy? +y" + Ay + A%y,
where B, C are at our disposal. Since b,, is as yet undetermined, ¢ cannot be
determined, so by, is not determined. To annul the £, term

BbP + CbP + b + Ab® + A% = 0,
and comparison with the asymptotic form for f,(7) above gives
100 +d7 + Ad® = 2byy— by,

Since, at this stage, 4 is a function of b,,, C is a function of b,,, by, and s0 by, is a
function of b, by,. Therefore there are fwo undetermined constants at this stage
bio and byy. by, is given in terms of b, and b,,. Thus, only two of the constants are
undetermined and available for joining onto the leading edge solution. We write

Ja) = fa+ Aofa+A%fs+ Bufy }

(A 8)
bag == 1bgo + A 3039 + A%D50 + B 4bgy,

where B is an unknown constant which like 4 (or like two of by, by, b5,) is avail-
able to make a smooth join of this solution onto the leading edge one. The ,f,(7)
(1=1,2,3,4), are

fa(n) = (16/adP) (B Y — bP y) ~ 29— 4bso,

sfa(n) = (1/6P) (6P Y ~ 6P y?) ~ — D30

2Ja(n) = (1/6) (P ¢ — P yP) — 3d® ofy ~ ~ Bn* — obso, (A9)
Sa(n) =y — (8[ar) (byy + i) Y& + (1[0 [(8V [ox) (boy + i) — BTy

~ (3b1y — 1b10) N = by ) + (47035 — 1bg)-
Note that b,y = B. As is necessary and what was found numerically, by, b, 0
are all non-zero. Note that a second undetermined constant is introduced at this
stage. These functions and their first derivatives are given in tables 2, 3,1 their
second derivatives at # = 0 in table 5, and the constants

199523 < by, < 499526, 99-561 < ,b,, < 99562,
— 1533 < by < —1-532, and by, = 23-903.
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