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Incompressible viscous flow past a 
semi-infinite flat plate 
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The asymptotic solution for the incompressible viscous flow past a semi-infinite 
flat plate constructed by Goldstein (1956, 1960) can be valid only if the solutions 
of certain ordinary differential equations obey certain constraints (given in 
Goldstein 1956,1960). I n  this paper, we construct the solutions ofthese equations, 
show that the necessary constraints are met, and hence establish the validity of 
the asymptotic solution up to the order considered. The manner in which un- 
determined constants appear in the solution are discussed. 

Introduction 
Goldstein (1956,1960) obtains an asymptotic description of the stream function 

qkl, for the flow, with velocity U ,  of an incompressible viscous fluid, with viscosity 
p, past a semi-infinite flat plate which in Cartesian co-ordinates lies in x1 > 0, 
y1 = 0. With 

where v is the kinematic viscosity and 5, 7 are the conventional parabolic co- 
ordinates stretched by (U/v)&.  The plate lies in 7 = 0 and the flow field occupies 
the region -co < 5 < co, 7 > 0. The least general potential solution into which 
the boundary-layer solution merges is given by (see Goldstein 1960) II. = I m  w, 
where w is given by 

where P = 1.7208, and the b,,i are real. The expansion of w for large 5 (151 > 7) 
suggests that the appropriate form for the asymptotic solution for @ in the 
boundary layer is 

$ = " f o ( 9 )  + 5-1r.f2(7) +SAT)  log 51 
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where the functions f,, g,, h,, kn,  . . . and their first derivatives vanish at the 
origin and, by comparison with ( 2 )  for 6 large and 151 > T, t  must be such that 

I 
1 

f o  - 3T-P ,  f z  - bl,, g z  b,,, 

f3 - 6 4 b 2 1 -  bl, 7),  9, - nbzz, h 3  - 0, 

f 4  - ( $ n z b 3 2  - b 3 o )  - ~ ( i n ~ b z z  + b21- 2bzo) + Y/~( jb11- blo), 

9 4  (2r2b,3 - b 3 1 )  - 37(bzz - 621)  - bllT2, 
h4 - - b 3 z + 3 b 2 2 7 ,  Ir4 - - b 3 3 ,  

the error terms being exponentially small. Goldstein (1960) gives a complete 
discussion of the form of the solution: the discussion rests on the conjecture that 
certain ordinary differential equations admit solutions with specifically restricted 
asymptotic behaviour. Imai ( 1957), in a completely independent investigation, 
used exactly the same form for the 1/c', (log <')/c', I/6 and (log t)/t terms and his 
numerical calculation for the const,ant bll (see equations (3), (4)) is in agreement 
with that found below. 

2. Differential equations and their solutions 
Substitution of (3) in the full Navier-Stokes equation, in appropriate parabolic 

co-ordinatel form, shows that the f, g, h, lc, must obey the following differential 
equations:§ 

f{+ f,, f; = 0, 

U g z )  = 0, W Z )  = 4, 
L 3 ( h 3 )  = 0, L 3 ( 9 3 )  = 41' L 3 1 f 3 )  = 4 2 ,  

I ( 5 )  

L4(k4)  = ' 9  L4(h4) = F41, ' 4 ( g 4 )  = 4 2 ,  L 4 ( f 4 )  = &3? 

where fo is the Blasius function, f,, N 37-/3, /3 = 1.7308, f i ( 0 )  = a = 1.32834, 
f; - y exp ( - h2), where h = ?;I - @, and y is a constant, the primes denote 
differentiation with respect to 7, and 

-f Since we are considering a descending series in [, tan-l 517 must be replaced by 

$ These are the optimal co-ordinates (see Kaplun 1954). 
4. - tan-l 716 for 5 > 0 and - - tan-l 716 for 5 < 0. 
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It is shown in Goldstein (1960) following Whittaker & Watson (1932) that the two 
complementary functions of L,(y) = 0 with double zeros at the origin, denoted 
by yf), yg), are yg) = a q 2 / 2 ! - ( n + 2 ) ~ ~ ~ ~ / 5 ! + . . . ,  7 

yp) = a 7 3 / 3 ! - 2 ( n + 2 ) ~ ~ 7 ~ / 6 ! + . . . , /  (7 )  

for small 7, and for large 7, 

( 8 )  

(9) 

yf) N a g )  + bf )E,  + cg)  H,, I 
yg) - a7/2n + a:) + b g ) ~ ,  + c y ) ~ ~ , ,  1 

where En - hl-”[l+ (n - 1) n/4h2 + . . .], 
H, = exp(-h2)hn-2[1- (n-2) (n-3) /4h2+ ...I, 

and ah2), b‘,), c‘,), u$‘), b f ) ,  c$‘) are constants. For each n, the y?) and y$‘) (except 
for y‘,“)) were calculated numerically by solving L,(y,) = 0 in steps of 7 = 0.02 
with initial boundary conditions 

After computing the En, the numerical solutions so found were then equated to 
the asymptotic form (9)) a t  a value of 7 where the exponential terms were 
negligible, and the constants u:), a:), bk2), bg) evaluated. It was found that none 
of these ug), bg) (i = 2 , 3 )  were zero for n up to 4, except bL2), which case is discussed 
below. The particular integrals were found in a similar way and none of ug), 
bg) (i = 4, ..., 9 )  defined below and in the appendix were found to be zero. 

The boundary conditions on the f,, g,, h,, k,  are that they must have double 
zeros at the origin and be asymptotic to the values in (4) with exponentially small 
errors. Since equations (5) are linear the f,, g,, h,, k ,  will involve linear combi- 
nations of the complementary functions and particular integrals, and must be such 
that the coefficient of the En in each of them must be zero (see Goldstein 1960). 
In  view of the complicated form of the F, in (6) each function must be treated 
separately to ensure that this is possible. It is necessary, as shown below and in 
the appendix, to consider the functions in the order, k ,  h, g, f for each n. The case 
n = 2 is a special case and will be discussed in detail. The case n = 3 will also be 
discussed as a more typical case. All other cases are treated comparably. The 
complication increases with n, and the case n = 4 is given for reference in the 
appendix. 

Case n = 2. The equation for g 2 ( 7 )  is, from ( 5 ) ,  

L2(92) = 0. 

This equation is an exception to the general form since 

Yk2) = 7fA-f0, 
and so bL2) = 0. Thus with (4) 

where b,, is as yet undetermined. 
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(since bL2’ = 0 )  

Let yi4) be the particular integral of the f, equation with the first term in F2 only 
and yL5) that with the second term in F, only and b,, = p. Thus from (5) and ( G ) ,  

The equation for f,(?) is given by (5) and (6). Complementary functions are 

yL2) N ak2) = /3, yi3) w gar + aL3) + bL3) E, + cL3)H,. 

1 yL4) N $p2q + aL4) + bL4) E, + c!j4) H,, 
yL5) N aL5) + bL5) E, + ci5) H,, 

and so f2 (v )  = yL4) + ~, ,Y&~’ /P + AyL2’ + Byi3’, 

where A ,  B are constants at our disposal. Since, from (4), f, N b,,, A ,  B must be 
chosen to annul the 27 and E, terms in the above expression for f,. Thus 

B = - p / a ,  b,, = (P/abL5)) (P%‘,3’-abk4’), (11) 

which thus determines bll. With these values 

f 2 (  q )  N b,, = [ah4) + (aL5)/abL5)) (P2bL3) - abi4)) - (/32/a) ah3)] +AD. 

Thus b,, is undetermined since A is undetermined. 
Note that the construction of f 2 (  ’1) depends on bL3), bi4), bL5) being non-zero: this 

was found to be the case numerically. Although the fact that bL2) = 0 is excep- 
tional, the solution for f 2 ( V )  can still be constructed. At this stage one undeter- 
mined constant is introduced. 

Write 

f d r )  = l f 2 ( ? / )  + A 2 f  A?/), 610 = lb,, + A 2b10, 

,f2 = yi4)-P2yL3)/a+ b,, yL5)/P, , f2  = yh2) = d A -fo, where } (12) 

Ib,, = [ah4) + (aL5)/abi5)) (P2bL3) - abL4)) - (,@/a) up) ] ,  = p. 
The functions g2(7;1), gS(v), ,f2(7), Ji(v), ,f2(7), 2fb(?j) are tabulated in table 1,t and 
the second derivatives a t  7 = 0 in table 5. Also 

,bl, = - 2.2062 and ,b,, = = 1-7308. 

If the solution were terminated at this stage an undetermined constant 
A (or blo) appears. This will allow this solution to be joined onto that valid near 
the leading edge. 

Case n = 3. From (5 ) ,  h3(v) can only be a combination of complementary 
functions. No linear combination of yL2) and yL3) is possible which annuls both the 

and E3 terms so that the combination asymptotes to zero with an exponentially 
small error. Therefore h , ( ~ )  = 0. 

Since h,(?l) = 0, the equation for g 3 ( q ) ,  from (5) and (6), becomes 

L3(g3) = 2 ( h ~ f ~ - h 3 f ~ )  = 0. (13) 

By the same argument as for h3(r) ,  g3(?1) -= 0 and b,, = 0 (equation (4)). 

was found to be the case numerically. 
The fact that h3(7) = 0 and g3(v) = 0 depends on a&,), bL2) being non-zero, which 

Tables 1-4 have been lodged with the Editor and may be borrowed on request. 



Plow past a semi-inJnite$at plate 

Since g3(7) = 0 the equation forf3(q) from (5) and (6) becomes 

L3(f3) =f;g:-f:g, = 0. 

341 

From (4),f3(r) - @(b,, - b, ,~) ,  so it is possible to combine yi2) and 9b3) to annul the 
E3 term and asymptote to the above, giving 

f3(y) = (37rb,,/abp) (b$3)y$2’- b(32)y(33)), (14) 

and b,, = ( S b , , / ~ b & ~ ) )  (bk3)ai2)- bL2)aL3)). (15) 

Clearly with a&’), bL2) not equal to zero, as is the case, the construction off3(7) 

f3(7),fA(7) are tabulated in table 2,tf;(O) in table 5 ,  and 2.2670 < b,, < 2.2673. 
Note that the n = 3 case introduces no more undetermined constants. 
The n = 4 case is carefully discussed in the appendix and it is shown that a 

depends on bk3) being non-zero. This was found to be so numerically. 

further undetermined constant B is introduced. 

3. Conclusions 
The differential equations were all solved on a Univac machine as initial-value 

problems with steps of 0.02 in 7 in the final stage. First and second differences 
of the functions and first four derivatives were calculated. The asymptotic form 
when compared with the numerical results gave the various constants. The 
functions behaved numerically as predicted by the analysis. This numerical 
verification settles the question of the construction of the solution up t.0 the 
fourth term. 

The solution obtained involves two undetermined constants A and B which 
will be determined by joining the above solution onto the leading edge solution. 
As far as the author is aware, no correct solution for this region has yet been 
found. In  the external potential flow there are more than two undetermined b’s 
although there are effectively only two independent undetermined constants 
related to A and B. At the n = 2 stage b,, is undetermined. At the n = 4 stage 
bll, b,,, b22, b,,, b,, are determined and blo, b,, are undetermined. b,,, b,, are also 
unknown but are related to b,, and b2,. b,, depends only on b,, and b,, on b,, and 

Thus, in conclusion, the functions g2(7), h3(r) (identically zero), g3( a)  (identi- 
cally zero), f 3 ( q ) ,  k4(q)  (identically zero) are all determined while f2(r), g4(q) ,  

f4()1) are undetermined. f2(7) and g4(q)  depend on one undetermined constant -4, 
introduced a t  the n = 3 stage, while f,( q )  depends on two undetermined constants 
A and B,  the second, B,  being introduced a t  the n = 4 stage. 
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Lodged with the Editor. 
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Appendix 
The general form of the solutions to equations (5) is discussed in Q 2 above and 

the particular cases n = 2,  n = 3 are considered there. Although in principle the 
n = 4 case is not essentially different, it is given here for reference. Note that a 
further undetermined constant is introduced here. 

Case n = 4. The equation for E4(y) is, from ( 5 ) ,  

L4(k4) = 0, 

where k4 N - b,3. By the same argument as for h, and g, (see Q 2 above) k4 = 0 and 
b,, = 0. This fact is dependent on bk2) not being zero, which again was found to be 
the case numerically. 

The function h4(r) satisfies 

L4(h4) = g2g: - 3g;g;+3(f;Ic,"-f3,) 

= szg: - 3g;,g;, (A 1) 

since k, = 0. Let yi4) be the particular integralof (A 1) .  Since the right-hand side 
asymptotes to zero, 

From (4)) h4 N - b3,+ 2b2,7 = - b,,, since b,, = 0 from above. Thus. we can 
combine yk2) and yi4) to annul the E4 term to give 

(A 2 )  

where, since bi2) + 0, it  is necessary that bi4) is not equal to zero, which was found 
to be the case numerically. 

yi4' N ui4) + bh4' E4 + cL4' H4. 

h4(q) = yi4) - b$4)yi2)/b',2), b,, = (bk4)ai2) - b&2)ai4))/bi2), 

Table 47 gives h 4 ( r ) ,  hi(y), table 5 h1;(0), and 5.948 < b,, < 5.949. 
The function g4(y) satisfies (see (5) and (6)) 

A4(94) = ( -929: + gig; - 29; fo - 109, i; - 1%;) 

+ 2 m 7 :  +fog; -f&7,) 

+ 2r"f;g;+f;g;) + 2(fpj;-f:h,) 

+ (9,  g - 39; Y; - 39; f ; ,  + 9 8 2 ) .  (A 3) 

The right-hand side of (A 3) contains a term multiplied by the unknown constant 
A and comes from the J2  (see (12)) contribution in the last bracket. Let yk5) be 
the particular integral excluding the 2 f 2  function and its derivatives and yi6) the 
particular integral with the , f ,  function and its derivatives only and with A = 1.  
The right side of the equation for yi5) asymptotes to - 20b,, and so 

yi5) - - b,, 3 2  + 45)7 + 4 5 )  + bk5)E4 + 45'H4.$ 

The right side of the equation for yJ6) asymptotes to zero, so 

9i6) N f bi6) E4 + Ci6)  H4. 
Since (4) give 

94(.T) (+n2b,, - 631) + W b , ,  - 4,) - b n r 2  = - b3, + w,, - bl, T 2 -  

Lodged with the Editor. 
1 The d,'s are constants, none of which is numerically zero. 
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the appropriate linear combination of yi2), yi3), yi5) and yi6) t o  annul theE4 term and 
give the correct asymptotic form above is 

g4(7) = (Ijabi2)) [ 8 ( d p  - 2b2,) b f ’  - “ 6 9  y p  ’ 1 (-44) 
+ (8/a)  (2b2, - di5)) yi3) + yf’ 

+ (A  / b p )  ( b y  yk6’ - b&6’yp), 

g4(7) = 1g4(7) + A  2g4(7), b31 = 1b31.-tA 2b31, 

where ,g4, ,g4 are defined by (A 4). In  a similar way to the above, the existence 
of lg4(q), 2g4(?1) depends on all of bi3’, b15), bi6) (bi2) has already been shown to be non- 
zero) being iiumerically non-zero, which was found to be the case. Thus 

1g4(7) - - b l 1 7 2 f  27b21 + l b 3 1 ,  2g4b) zb3,,  

1 ( A 5 )  
where Ib,l = (ai2)/abi2)) [8(2b21- di5)) + abi5)] + (8ai3)/a) (dl5) - 2b2,) - al5), 

b = (biz) (6) -  b‘6) (2) 
2 31 a4 4 a4 )Pi2). 

,g4(11), 2g4(7) and their first derivatives are giveniii table 4,t lgi(0), 2gi(0) in table 5, 
and 65.794 6 ,b3, 6 65.798 and 9.952 6 2b31 6 9.953. 

TABLE 5 

Finally, f4(7) satisfies, from (5) and (6),  

U f 4 )  = E3f0gh + 1Ogi + 1 7 f b 2  + W i g 2  - 273&’(7f; -fdI 
+ [ - (92 f‘T + 12f; + 2 fo f6  - s ; f ;  + lof;  f 2 )  

+ w 2 f :  + f o  f ;  - fX) 
+ 27“fh f; + f X )  f (fh94” -f094)1 

+ rf2 ft  - 3f;. f il. (A 6) 

The unknown constant A appears on the right-hand side of (A 6),  as does A2.  
Let yr),  yk”, yig)be the particularintegrals withtheright sideof (A 6) the coefficients 
of AO, A:  A2, respectively. The asymptotic form of the right of (A G )  is 

(30b1, - 20,b,,) - 202b10A. 

Thus yi7’ - (;bll-,bl0) . i / a + ~ i 7 ’ ~ + a ~ 7 ’ + b ~ 7 ) ’ E 4 + c ~ ~ ) ~ 4 , ~  

y p  N - 2b10 7 2  + d p  7 +  a‘ 48) f bi”’E4 + cp,8,H4, (A 7 )  
yig’ N !4’) f big) E4 + 4’’ H 4‘ 

The dhi) and di6) were found to be non-zero. From (4), 

f a ( ? )  (knZb3Z-’30) + 7 ( 2 b 2 0 - b 2 1 - 3 n 2 b 2 2 )  f 7 2 ( ’ % b 1 1 - b 1 0 )  

= ( &n2b32 - b30) + 7( 2b2, - bzl) + y2( g b 1 1 -  b 1 0 ) .  

t Lodged with the Editor. 



3f4(r) = ( 1/bL2’) (bi2’Yk9)- bL9’yi2’) - - 3b30, 

aj4(?/) = (l/bk2’) (bk’2’yp’ -bi%&’) - 4dp4f4 N - P ? / 2  - 2b30, 
l f4(7)  = yi7’- ( 8 / ~ )  ( b , , + d ~ 7 ’ ) ~ ~ 3 ’ +  ( l /b i2’ )  [(8bf’/a) (b,,+df’) - b‘,;’]yi2’ 

R E F E R E N C E S  

GOLDSTEIN, H. 
plate. Inst. Engn.g Res., Un,ici. Calif., Tech. Rep.  HE-150-144. 

GOLDSTEIN, S .  1960 Lectures on Pluid Mechanics. New Yorli: Interscience. 
IMAI, I. 1957 Second approximation t o  the laminar boundary-layer flow over a flat plate. 

KAPLUN, S. 1954 Role of co-ordinate systems in boundary-lager theory. 2. angew. Nath. 

WHITTAXER, E. T. &WATSON, G. N. 1932 Modern Anulysis.  Cambridge University Press. 

p Lodged with the Editor. 

1956 Flow of an incompressible viscous fluid along a semi-infinite flat 

J .  Awe. S c i .  24, 156. 

Phys. 5, 111. 

(A a)  


